Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Connect ; 14(2): 130-140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308475

RESUMO

Aim: To develop an approach to evaluate multiple overlapping brain functional change patterns (FCPs) in functional network connectivity (FNC) and apply to study developmental changes in brain function. Introduction: FNC, the network analog of functional connectivity (FC), is commonly used to capture the intrinsic functional relationships among brain networks. Ongoing research on longitudinal changes of intrinsic FC across whole-brain functional networks has proven useful for characterizing age-related changes, but to date, there has been little focus on capturing multivariate patterns of FNC change with brain development. Methods: In this article, we introduce a novel approach to evaluate multiple overlapping FCPs by utilizing FNC matrices. We computed FNC matrices from the large-scale Adolescent Brain Cognitive Development data using fully automated spatially constrained independent component analysis (ICA). We next evaluated changes in these patterns for a 2-year period using a second-level ICA on the FNC change maps. Results: Our proposed approach reveals several highly structured (modular) FCPs and significant results including strong brain FC between visual and sensorimotor domains that increase with age. We also find several FCPs that are associated with longitudinal changes of psychiatric problems, cognition, and age in the developing brain. Interestingly, FCP cross-covariation, reflecting coupling between maximally independent FCPs, also shows significant differences between upper and lower quartile loadings for longitudinal changes in age, psychiatric problems, and cognition scores, as well as baseline age in the developing brain. FCP patterns and results were also found to be highly reliable based on analysis of data collected in a separate scan session. Conclusion: In sum, our results show evidence of consistent multivariate patterns of functional change in emerging adolescents and the proposed approach provides a useful and general tool to evaluate covarying patterns of whole-brain functional changes in longitudinal data. Impact statement In this article, we introduce a novel approach utilizing functional network connectivity (FNC) matrices to estimate multiple overlapping brain functional change patterns (FCPs). The findings demonstrate several well-structured FCPs that exhibit significant changes for a 2-year period, particularly in the functional connectivity between the visual and sensorimotor domains. In addition, we discover several FCPs that are associated with psychopathology, cognition, and age. Finally, our proposed approach for studying age-related FCPs represents a pioneering method that provides a valuable tool for assessing interconnected patterns of whole-brain functional changes in longitudinal data and may be useful to study change over time with applicability to many other areas, including the study of longitudinal changes within diagnostic groups, treatment effects, aging effects, and more.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adolescente , Humanos , Imageamento por Ressonância Magnética/métodos , Cognição , Envelhecimento , Mapeamento Encefálico
2.
Hum Brain Mapp ; 44(2): 509-522, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574598

RESUMO

Characterizing neuropsychiatric disorders is challenging due to heterogeneity in the population. We propose combining structural and functional neuroimaging and genomic data in a multimodal classification framework to leverage their complementary information. Our objectives are two-fold (i) to improve the classification of disorders and (ii) to introspect the concepts learned to explore underlying neural and biological mechanisms linked to mental disorders. Previous multimodal studies have focused on naïve neural networks, mostly perceptron, to learn modality-wise features and often assume equal contribution from each modality. Our focus is on the development of neural networks for feature learning and implementing an adaptive control unit for the fusion phase. Our mid fusion with attention model includes a multilayer feed-forward network, an autoencoder, a bi-directional long short-term memory unit with attention as the features extractor, and a linear attention module for controlling modality-specific influence. The proposed model acquired 92% (p < .0001) accuracy in schizophrenia prediction, outperforming several other state-of-the-art models applied to unimodal or multimodal data. Post hoc feature analyses uncovered critical neural features and genes/biological pathways associated with schizophrenia. The proposed model effectively combines multimodal neuroimaging and genomics data for predicting mental disorders. Interpreting salient features identified by the model may advance our understanding of their underlying etiological mechanisms.


Assuntos
Transtornos Mentais , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Redes Neurais de Computação , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
3.
Hum Brain Mapp ; 43(8): 2503-2518, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274791

RESUMO

Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short-lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state-space time series summarization framework called "statelets" to address these shortcomings. It models functional connectivity dynamics at fine-grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time-course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross-modal and multimodal applications to study healthy and disordered brains.


Assuntos
Mapeamento Encefálico , Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Análise por Conglomerados , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem
4.
Brain Connect ; 12(1): 61-73, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34049447

RESUMO

Background: Brain imaging data collected from individuals are highly complex with unique variation; however, such variation is typically ignored in approaches that focus on group averages or even supervised prediction. State-of-the-art methods for analyzing dynamic functional network connectivity (dFNC) subdivide the entire time course into several (possibly overlapping) connectivity states (i.e., sliding window clusters). However, such an approach does not factor in the homogeneity of underlying data and may result in a less meaningful subgrouping of the data set. Methods: Dynamic-N-way tri-clustering (dNTiC) incorporates a homogeneity benchmark to approximate clusters that provide a more "apples-to-apples" comparison between groups within analogous subsets of time-space and subjects. dNTiC sorts the dFNC states by maximizing similarity across individuals and minimizing variance among the pairs of components within a state. Results: Resulting tri-clusters show significant differences between schizophrenia (SZ) and healthy control (HC) in distinct brain regions. Compared with HC subjects, SZ show hypoconnectivity (low positive) among subcortical, default mode, cognitive control, but hyperconnectivity (high positive) between sensory networks in most tri-clusters. In tri-cluster 3, HC subjects show significantly stronger connectivity among sensory networks and anticorrelation between subcortical and sensory networks than SZ. Results also provide a statistically significant difference in SZ and HC subject's reoccurrence time for two distinct dFNC states. Conclusions: Outcomes emphasize the utility of the proposed method for characterizing and leveraging variance within high-dimensional data to enhance the interpretability and sensitivity of measurements in studying a heterogeneous disorder such as SZ and unconstrained experimental conditions as resting functional magnetic resonance imaging. Impact statement The current methods for analyzing dynamic functional network connectivity (dFNC) run k-means on a collection of dFNC windows, and each window includes all the pairs of independent component analysis networks. As such, it depicts a short-time connectivity pattern of the entire brain, and the k-means clusters fixed-length signatures that have an extent throughout the neural system. Consequently, there is a chance of missing connectivity signatures that span across a smaller subset of pairs. Dynamic-N-way tri-clustering further sorts the dFNC states by maximizing similarity across individuals, minimizing variance among the pairs of components within a state, and reporting more complex and transient patterns.


Assuntos
Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Análise por Conglomerados , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2201-2206, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891724

RESUMO

Neuropsychiatric disorders involve complex polygenic determinants as well as brain alterations. The combination of genetic inheritance and neuroimaging approaches could advance our understanding of psychiatric disorders. However, cross-disorder overlap is a current issue since psychiatric conditions share some neurogenetic correlates, symptoms, and brain effects. Exploring the impact of genetic risk on the brain across disorders could help understand commonalities across multiple psychopathologies. To do this, we first compute the linear relationship between PRS and voxel-wise grey matter volume to generate brain maps for five psychiatric and three control traits. Next, we use the biclustering approach to identify regions of the brain associated with polygenic risk scores in one or more traits. Our results demonstrate a significant overlap in brain regions connected to polygenic risk across psychiatric traits. Moreover, such brain domains are highly allied with the polygenic risk for non-psychiatric control traits. This multi-trait overlap characterizes the nonspecific relationship between neural anatomy and inherited risk factors in psychiatric conditions, and in some cases, the overlap in neural features linked to genetic risk for non-psychiatric attributes.Clinical Relevance-This study presents biclusters of multiple psychiatric and control traits. The analysis reported various brain regions, including cerebellum, cuneus, precuneus, fusiform, supplementary motor area, that show significant correlation with polygenic risk scores across diverse groups of psychiatric conditions and non-psychiatric control traits.


Assuntos
Substância Cinzenta , Herança Multifatorial , Encéfalo/diagnóstico por imagem , Análise por Conglomerados , Substância Cinzenta/diagnóstico por imagem , Humanos , Herança Multifatorial/genética , Fatores de Risco
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3267-3272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891938

RESUMO

Neuropsychiatric disorders such as schizophrenia are very heterogeneous in nature and typically diagnosed using self-reported symptoms. This makes it difficult to pose a confident prediction on the cases and does not provide insight into the underlying neural and biological mechanisms of these disorders. Combining neuroimaging and genomic data with a multi-modal 'predictome' paves the way for biologically informed markers and may improve prediction reliability. With that, we develop a multi-modal deep learning framework by fusing data from different modalities to capture the interaction between the latent features and evaluate their complementary information in characterizing schizophrenia. Our deep model uses structural MRI, functional MRI, and genome-wide polymorphism data to perform the classification task. It includes a multi-layer feed-forward network, an encoder, and a long short-term memory (LSTM) unit with attention to learn the latent features and adopt a joint training scheme capturing synergies between the modalities. The hybrid network also uses different regularizers for addressing the inherent overfitting and modality-specific bias in the multi-modal setup. Next, we run the network through a saliency model to analyze the learned features. Integrating modalities enhances the performance of the classifier, and our framework acquired 88% (P < 0.0001) accuracy on a dataset of 437 subjects. The trimodal accuracy is comparable to the state-of-the-art performance on a data collection of this size and outperforms the unimodal and bimodal baselines we compared. Model introspection was used to expose the salient neural features and genes/biological pathways associated with schizophrenia. To our best knowledge, this is the first approach that fuses genomic information with structural and functional MRI biomarkers for predicting schizophrenia. We believe this type of modality blending can better explain the disorder's dynamics by adding cross-modal prospects.Clinical Relevance- This study combinedly learns imaging and genomic features for the classification of schizophrenia. The data fusion scheme extracts modality interactions, and the saliency experiments report multiple functional and structural networks closely connected to the disorder.


Assuntos
Aprendizado Profundo , Esquizofrenia , Genômica , Humanos , Neuroimagem , Reprodutibilidade dos Testes , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
7.
Neuroimage Clin ; 28: 102375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32961402

RESUMO

Many mental illnesses share overlapping or similar clinical symptoms, confounding the diagnosis. It is important to systematically characterize the degree to which unique and similar changing patterns are reflective of brain disorders. Increasing sharing initiatives on neuroimaging data have provided unprecedented opportunities to study brain disorders. However, it is still an open question on replicating and translating findings across studies. Standardized approaches for capturing reproducible and comparable imaging markers are greatly needed. Here, we propose a pipeline based on the priori-driven independent component analysis, NeuroMark, which is capable of estimating brain functional network measures from functional magnetic resonance imaging (fMRI) data that can be used to link brain network abnormalities among different datasets, studies, and disorders. NeuroMark automatically estimates features adaptable to each individual subject and comparable across datasets/studies/disorders by taking advantage of the reliable brain network templates extracted from 1828 healthy controls as guidance. Four studies including 2442 subjects were conducted spanning six brain disorders (schizophrenia, autism spectrum disorder, mild cognitive impairment, Alzheimer's disease, bipolar disorder, and major depressive disorder) to evaluate validity of the proposed pipeline from different perspectives (replication of brain abnormalities, cross-study comparison, identification of subtle brain changes, and multi-disorder classification using identified biomarkers). Our results highlight that NeuroMark effectively identified replicated brain network abnormalities of schizophrenia across different datasets; revealed interesting neural clues on the overlap and specificity between autism and schizophrenia; demonstrated brain functional impairments present to varying degrees in mild cognitive impairments and Alzheimer's disease; and captured biomarkers that achieved good performance in classifying bipolar disorder and major depressive disorder.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Transtorno do Espectro Autista/diagnóstico por imagem , Biomarcadores , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos
8.
IEEE Trans Biomed Eng ; 67(1): 110-121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946659

RESUMO

OBJECTIVE: We propose and develop a novel biclustering (N-BiC) approach for performing N-way biclustering of neuroimaging data. Our approach is applicable to an arbitrary number of features from both imaging and behavioral data (e.g., symptoms). We applied it to structural MRI data from patients with schizophrenia. METHODS: It uses a source-based morphometry approach [i.e., independent component analysis of gray matter segmentation maps] to decompose the data into a set of spatial maps, each of which includes regions that covary among individuals. Then, the loading parameters for components of interest are entered to an exhaustive search, which incorporates a modified depth-first search technique to carry out the biclustering, with the goal of obtaining submatrices where the selected rows (individuals) show homogeneity in their expressions of selected columns (components) and vice versa. RESULTS: Findings demonstrate that multiple biclusters have an evident association with distinct brain networks for the different types of symptoms in schizophrenia. The study identifies two components: inferior temporal gyrus (16) and brainstem (7), which are related to positive (distortion/excess of normal function) and negative (diminution/loss of normal function) symptoms in schizophrenia, respectively. CONCLUSION: N-BiC is a data-driven method of biclustering MRI data that can exhaustively explore relationships/substructures from a dataset without any prior information with a higher degree of robustness than earlier biclustering applications. SIGNIFICANCE: The use of such approaches is important to investigate the underlying biological substrates of mental illness by grouping patients into homogeneous subjects, as the schizophrenia diagnosis is known to be relatively nonspecific and heterogeneous.


Assuntos
Encéfalo/diagnóstico por imagem , Mineração de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Adolescente , Adulto , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
J Family Med Prim Care ; 4(4): 535-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26985412

RESUMO

INTRODUCTION: Metabolic syndrome is one of the emerging health problems of the world. Its prevalence is high in urban areas. Though pathogenesis is complex, but the interaction of obesity, sedentary lifestyle, dietary, and genetic factors are known as contributing factors. Community-based studies were very few to find out the prevalence or predictors of the syndrome. OBJECTIVES: To ascertain the prevalence and epidemiological predictors of metabolic syndrome. MATERIALS AND METHODS: A total of 690 study subjects were chosen by 30 clusters random sampling method from 43 wards of Durgapur city. Data were analyzed in SPSS version 20 software and binary logistic regression was done to find out statistical significance of the predictors. RESULTS: Among 32.75% of the study population was diagnosed as metabolic syndrome according to National Cholesterol Education Program Adult Treatment Panel III definition with a modification for Asia Pacific cut-off of waist circumference. Odds were more among females (2.43), upper social class (14.89), sedentary lifestyle (17.00), and positive family history. CONCLUSION: The overall prevalence of metabolic syndrome was high in urban areas of Durgapur. Increased age, female gender, higher social status, sedentary lifestyle, positive family history, and higher education were the statistically significant predictors of metabolic syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...